Brain Connectivity Mapping Using Riemannian Geometry, Control Theory, and PDEs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Connectivity Mapping Using Riemannian Geometry, Control Theory, and PDEs

We introduce an original approach for the cerebral white matter connectivity mapping from Diffusion Tensor Imaging (DTI). Our method relies on a global modeling of the acquired Magnetic Resonance Imaging (MRI) volume as a Riemannian manifold whose metric directly derives from the diffusion tensor. These tensors will be used to measure physical three-dimensional distances between different locat...

متن کامل

A Brain-Switch using Riemannian Geometry

This paper addresses the issue of asynchronous brain-switch. The detection of a specific brain pattern from the ongoing EEG activity is achieved by using the Riemannian geometry, which offers an interesting framework for EEG mental task classification, and is based on the fact that spatial covariance matrices obtained on short-time EEG segments contain all the desired information. Such a brain-...

متن کامل

Supersymmetric Yang-Mills Theory and Riemannian Geometry

We introduce new local gauge invariant variables for N = 1 supersymmetric Yang-Mills theory, explicitly parametrizing the physical Hilbert space of the theory. We show that these gauge invariant variables have a geometrical interpretation, and can be constructed such that the emergent geometry is that of N = 1 supergravity: a Riemannian geometry with vector-spinor generated torsion. Full geomet...

متن کامل

Using Riemannian geometry for SSVEP-based Brain Computer Interface

Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While work...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Imaging Sciences

سال: 2009

ISSN: 1936-4954

DOI: 10.1137/070710986